Step of Proof: linorder_lt_neg
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
linorder
lt
neg
:
1.
T
: Type
2.
R
:
T
T
3.
x
,
y
:
T
. Dec(
R
(
x
,
y
))
4.
a
:
T
.
R
(
a
,
a
)
5.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
6.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
7.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
8.
a
:
T
9.
b
:
T
(
(
R
(
a
,
b
) & (
R
(
b
,
a
))))
R
(
b
,
a
)
latex
by ((Unfold `decidable` 3 THEN InstHyp [
b
;
a
] 3
THENM InstHyp [
a
;
b
] 7
THENM ProveProp)
THE
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
TH
) inil_term)))
latex
TH
.
Definitions
P
Q
,
t
T
,
P
&
Q
,
A
,
P
Q
,
P
Q
,
x
(
s1
,
s2
)
,
,
False
,
P
Q
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin